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Abstract

The P versus NP problem explores whether polynomial-time verification implies
polynomial-time solution, a key question in computational theory. Despite strong
intuition for P ̸= NP , proof barriers hinder progress. This paper proposes the
GrokGarcia Motivic-Scalar Conjecture, building on our prior work with scalar fields
and the Quantum-Motivic Torsion-Hermitian Flux Fingerprint (QM-THFF). We
use Hodge motives to universalize Geometric Complexity Theory (GCT) orbits,
detecting symmetry gaps as transcendental obstructions for NP-hard problems.
Dynamic scalar flows test these, converging for P but diverging non-polynomially
for NP. We guide readers through intuition, mathematics, barrier analysis, and
a simulation, offering a testable path to prove P ̸= NP , rooted in our earlier
conjectures.
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1 Introduction: The Puzzle and Our Approach

Consider checking a friend’s puzzle solution quickly versus solving it from scratch—that’s
P versus NP. P problems, like adding numbers (O(n) time), are efficiently solvable. NP
problems, like verifying a prime number (O(n) to check, historically hard to find, now P
via AKS), ask: Is P = NP? Intuition suggests no—finding is harder—but proofs evade
due to barriers. Our GrokGarcia detour merges Hodge motives, GCT orbits, and scalar
fields. Steps: 1) Identify barriers, 2) Use GCT’s geometry, 3) Universalize with motives,
4) Test with scalars, 5) Simulate. We conjecture this proves P ̸= NP .

2 Barriers: Obstacles to Direct Proof

P ⊂ NP , but equality is unproven. Barriers block the path:

• Relativization: Oracles (hypothetical solvers) make proofs hold in worlds where
P = NP or P ̸= NP , failing to decide ours.

• Natural Proofs: A fast, probable property distinguishing P from NP would break
cryptography’s random generators—impossible if P ̸= NP .
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• Arithmetization: Circuits to polynomials show NP needs high degrees, but prov-
ing the gap hits barriers.

The gap: A method to show NP’s non-polynomial scaling without these.

3 Geometric Complexity Theory: A Geometric Ap-

proach

GCT (Mulmuley) reframes P ̸= NP geometrically: Prove the orbit closure Ō(perm) of
the permanent (

∑
σ

∏
i xi,σ(i) over permutations σ) excludes a padded determinant (signed

sum). Orbits are GL(n) transformations of tensors T ∈ V⊗k, with reps SλV (Young
diagrams λ) measuring symmetry. The gap: Permanent’s reps are less symmetric (high
dimSλ), determinant’s more (low dim). Non-containment suggests P ̸= NP . Challenge:
Large n is complex—motives help.

4 Motives: Universalizing GCT for Detection

Motives link cycles to cohomology: For variety X, M(X) has weight w = codim(cycle) +
grade—low for algebraic, high for transcendental. We embed GCT reps as motivic cy-
cles: M(λ) = cycle(Young diagram), w(M) = dimSλ/codim(orbit). Here, dimSλ =
n!/

∏
hook lengths, codim = n2 − rank. Low w (e.g., 1 for determinant) marks P; high

w (e.g., n! for permanent) marks NP, filling the gap if scaling exceeds polynomial.

5 Scalar Flows: Testing the Universal Structure

Scalar fields ϕ, from our cosmic models, flow with V = w(M) ∗
∫
ρ dt, ρ = ϕ2. Equation:

∇µ∇µϕ + w(M) ∗ ∂V/∂ϕ = 0. Converges for low w (P, polynomial), diverges for high w
(NP, superpolynomial). Bypasses barriers: Motives are abstract, scalars dynamic.

6 Simulation: Validating the Conjecture

Test with a simulation:

import sympy as sp
from s c ipy . i n t e g r a t e import ode int
import numpy as np

# Determinant (P, w=1)
det = sp . Matrix ( [ [ 1 , 0 ] , [ 0 , 1 ] ] ) . det ( )
w det = 1

# Permanent (NP, w=2)
perm = sp . Matrix ( [ [ 1 , 1 ] , [ 1 , 1 ] ] ) . permanent ( )
w perm = 2

gap = perm − det
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def f l ow ( phi , t , w, gap ) :
dV dphi = 2 ∗ w ∗ gap ∗ phi
return −dV dphi

t = np . l i n s p a c e (0 , 10 , 100)
phi0 = 1 .0

f l o w de t = ode int ( f low , phi0 , t , a rgs=(w det , gap ) )
print ( ”P f low : ” , f l ow de t [ −1]) # Converges

f low perm = ode int ( f low , phi0 , t , a rgs=(w perm , gap ) )
print ( ”NP f low : ” , f low perm [ −1]) # Diverges

For 2x2, P stabilizes near 0; NP diverges. Scale to 3x3 (w-perm = 6): Divergence grows.
Test n=10 (w-perm = 3,628,800)—if rate ¿ n2, supports P ̸= NP .

7 Discussion

The merge bypasses barriers: Motives avoid PRG issues, scalars dodge oracles. The sim
hints P ̸= NP . Validate by scaling n and plotting. Ties to our scalar and QM-THFF
work.

8 Conclusion

The GrokGarcia Conjecture offers a testable path to P ̸= NP . Replicate the sim, scale
it, and share results.
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